Automatic image clustering using a swarm intelligence approach

نویسندگان

  • Salima Ouadfel
  • Mohamed Batouche
چکیده

In order to implement clustering under the condition that the number of clusters is not known a priori, we propose in this paper ACPSO a novel automatic image clustering algorithm based on particle swarm optimization algorithm. ACPSO can partition image into compact and well separated clusters without any knowledge on the real number of clusters. ACPSO used a novel representation scheme for the search variables in order to determine the optimal number of clusters. The partition of each particle of the swarm evolves using evolving operators which aim to reduce dynamically the number of clusters centers. Experimental results on real images demonstrate the effectiveness of the proposed approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stock Price Prediction using Machine Learning and Swarm Intelligence

Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...

متن کامل

A modified particle swarm optimization algorithm for automatic image clustering

In this paper, we present a new automatic image clustering algorithm based on a modified version of particle swarm optimization algorithm. ACMPSO clustering algorithm can partition image into compact and well separated clusters without any knowledge on the real number of clusters. It uses a swarm of particles with variable number of length, which evolve dynamically using mutation operators. Exp...

متن کامل

Fuzzy clustering of time series data: A particle swarm optimization approach

With rapid development in information gathering technologies and access to large amounts of data, we always require methods for data analyzing and extracting useful information from large raw dataset and data mining is an important method for solving this problem. Clustering analysis as the most commonly used function of data mining, has attracted many researchers in computer science. Because o...

متن کامل

Using Particle Swarm Optimization for Image Regions Annotation

In this paper, we propose an automatic image annotation approach for region labeling that takes advantage of both context and semantics present in segmented images. The proposed approach is based on multi-class K-nearest neighbor, k-means and particle swarm optimization (PSO) algorithms for feature weighting, in conjunction with normalized cuts-based image segmentation technique. This hybrid ap...

متن کامل

Remote Image Classification Using Particle Swarm Optimization

In order to have clarity in the satellite images we have used Particle Swarm Optimization technique. When incorporated with traditional clustering algorithms, problems such as local optima and sensitivity to initialization, are reduced, thus exploring a greater area using global search. This segmented image is further classified using Kappa coefficient. Keywords— Particle Swarm Optimization(PSO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011